
Policies in Relational Contracts

Daniel Barron & Michael Powell

Kellogg School of Management 



Managers Motivate...

Managers motivate agents in long-term relationships



Managers Motivate... and Manage

Managers motivate agents in long-term relationships

Managers make decisions affecting importance of each agent to the firm



Managers Motivate... and Manage

Managers motivate agents in long-term relationships

Managers make decisions affecting importance of each agent to the firm

These decisions are often biased towards some agents over others

• Promotions (Benson, Li, and Shue, 2016)

• Hiring decisions (Ariely, Belenzon, and Tsolmon, 2013)

• Capital allocation decisions (Graham, Harvey, and Puri, 2015)



Managers Motivate... and Manage

Managers motivate agents in long-term relationships

Managers make decisions affecting importance of each agent to the firm

These decisions are often biased towards some agents over others

But why not settle up with cash? (Baker, Jensen, Murphy, 1988)
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Dual Role for Policies

Relational contracting: future surplus determines feasible incentives

Policies (history-contingent decision rules) determine:

1. Future surplus produced by each agent

2. What rewards are credible today

Optimal policies may bias decisions to make stronger incentives credible
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Agents Unable to Coordinate Punishment

Strikes in only 3 of 5 plants (Krueger, Mas, 2004)



Importance of Bilateral Surplus

Key feature: agents unable to coordinate on punishing the principal

Key assumption: each agent observes own relationship with principal, 

and agents do not communicate with each other



• Illustrative Example

• The General Model

• Main Results

• Applications

• The Role of Private Monitoring
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Example Illustrating Mechanism

One principal, two agents – risk-neutral, deep pockets, discount 𝛿 < 1

In first period:

1. Principal and each agent exchange wage payments 𝑤𝑖,𝑡 ∈ ℝ

2. Agent 𝑖 privately chooses effort 𝑒𝑖,𝑡 ∈ 0,1 at cost 𝑐𝑒𝑖,𝑡

3. From 𝑖, principal earns output 𝑦𝑖,𝑡 ∈ 0,𝐻𝑖 , Pr 𝐻𝑖 = 𝑝𝑒𝑖,𝑡 < 1

4. Principal and each agent exchange bonus payments 𝜏𝑖,𝑡 ∈ ℝ

After first period...

• Principal chooses agent 𝑖 with probability 𝑞𝑖 , 𝑞1 + 𝑞2 = 1

• Plays game repeatedly with chosen agent
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Example Illustrating Mechanism

One principal, two agents – risk-neutral, deep pockets, discount 𝛿 < 1

In first period...

1. Principal and each agent exchange wage payments 𝑤𝑖,𝑡 ∈ ℝ

2. Agent 𝑖 privately chooses effort 𝑒𝑖,𝑡 ∈ 0,1 at cost 𝑐𝑒𝑖,𝑡

3. From 𝑖, principal earns output 𝑦𝑖,𝑡 ∈ 0,𝐻𝑖 , Pr 𝐻𝑖 = 𝑝𝑒𝑖,𝑡 < 1

4. Principal and each agent exchange bonus payments 𝜏𝑖,𝑡 ∈ ℝ

At beginning of second period...

• Principal chooses one of the agents (agent 𝑖 with probability 𝑞𝑖)

• Plays game repeatedly with chosen agent (other agent produces 0 output)

Bilaterally 

observed

Privately

observed



Payoffs

Assume chosen agent exerts 𝑒𝑖,𝑡 = 1 from second period onwards

𝜋 = (1 − 𝛿)෍

𝑖=1

2

(𝑦𝑖,𝑡 − 𝑤𝑖,𝑡 − 𝜏𝑖,𝑡)

𝑢𝑖 = (1 − 𝛿)(𝑤𝑖,𝑡 + 𝜏𝑖,𝑡 − 𝑐𝑒𝑖,𝑡)



Motivating Each Agent

What motivates agent 𝑖 in first period? Following output vector 𝑦,

Agent 𝑖 works hard if:

𝐸[𝐵𝑖(𝐻𝑖 , 𝑦−𝑖,𝑡) ] − 𝐸[𝐵𝑖(0, 𝑦−𝑖,𝑡)] ≥ (1 − 𝛿)
𝑐

𝑝

𝐵𝑖(𝑦) = (1 − 𝛿)𝜏𝑖,𝑡 + 𝛿𝑈𝑖,𝑡



Motivating Each Agent

What motivates agent 𝑖 in first period? Following output vector 𝑦,

Agent 𝑖 works hard if:

Lack of commitment constrains 𝐵𝑖(𝑦): for each 𝑦,

𝐸[𝐵𝑖(𝐻𝑖 , 𝑦−𝑖,𝑡) ] − 𝐸[𝐵𝑖(0, 𝑦−𝑖,𝑡)] ≥ (1 − 𝛿)
𝑐

𝑝

0 ≤ 𝐵𝑖(𝑦) ≤ 𝑞𝑖𝛿(𝑝𝐻𝑖 − 𝑐)

𝐵𝑖(𝑦) = (1 − 𝛿)𝜏𝑖,𝑡 + 𝛿𝑈𝑖,𝑡



Motivating Each Agent

What motivates agent 𝑖 in first period? Following output vector 𝑦,

Agent 𝑖 works hard if:

Lack of commitment constrains 𝐵𝑖(𝑦): for each 𝑦,

Necessary and also sufficient, in a particular sense.

𝐸[𝐵𝑖(𝐻𝑖 , 𝑦−𝑖,𝑡) ] − 𝐸[𝐵𝑖(0, 𝑦−𝑖,𝑡)] ≥ (1 − 𝛿)
𝑐

𝑝

0 ≤ 𝐵𝑖(𝑦) ≤ 𝑞𝑖𝛿(𝑝𝐻𝑖 − 𝑐)

𝐵𝑖(𝑦) = (1 − 𝛿)𝜏𝑖,𝑡 + 𝛿𝑈𝑖,𝑡
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Dynamic Enforcement Constraint

𝑆1

𝑆2

𝛿(𝑝𝐻1 − 𝑐)

𝛿(𝑝𝐻2 − 𝑐)

Credible 𝐵1, 𝐵2

𝑞1

𝑞2

𝑞1 + 𝑞2 = 1

0 ≤ 𝐵1(𝑦) ≤ 𝛿(𝑝𝐻1 − 𝑐)𝑞1(𝑦)

0 ≤ 𝐵2(𝑦) ≤ 𝛿(𝑝𝐻2 − 𝑐)𝑞2(𝑦)



Option 1: Ex post Efficiency

𝑆1

𝑆2

𝛿(𝑝𝐻1 − 𝑐)
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0 ≤ 𝐵2(𝑦) ≤ 𝛿(𝑝𝐻2 − 𝑐)𝑞2(𝑦)

𝑞1 = 1



Option 1: Ex post Efficiency

𝑆1

𝑆2

𝛿(𝑝𝐻1 − 𝑐)

𝛿(𝑝𝐻2 − 𝑐)

Credible 𝐵1, 𝐵2

0 ≤ 𝐵1(𝑦) ≤ 𝛿(𝑝𝐻1 − 𝑐)𝑞1(𝑦)

0 ≤ 𝐵2(𝑦) ≤ 𝛿(𝑝𝐻2 − 𝑐)𝑞2(𝑦)

𝑞1 = 1

0



Option 2: Randomization
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𝛿(𝑝𝐻2 − 𝑐)
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Option 3: History-Dependent Inefficiencies
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Option 3: History-Dependent Inefficiencies

𝑆1

𝑆2

𝛿(𝑝𝐻2 − 𝑐)

if (𝐻1, 𝐻2)

if (𝐻1, 0) or (0,0)

if (0, 𝐻2)

Maximal incentives for Agent 1:

𝐸[𝐵1(𝐻1, 𝑦2)] 𝛿(𝑝𝐻1 − 𝑐)

𝐸[𝐵1(𝐻1, 𝑦2)] − 0



Option 3: History-Dependent Inefficiencies

𝑆1

𝑆2

if (𝐻1, 𝐻2)

if (𝐻1, 0) or (0,0)

if (0, 𝐻2)

Maximal incentives for Agent 1:

𝐸[𝐵1(𝐻1, 𝑦2)] − 0

𝐸[𝐵1(𝐻1, 𝑦2)]

Maximal incentives for Agent 2:

𝐸[𝐵2(𝑦1, 𝐻2)] − 0- 𝐸[𝑏2(𝑦1, 0)]

𝛿(𝑝𝐻1 − 𝑐)

𝛿(𝑝𝐻2 − 𝑐)

𝐸[𝐵2(𝑦1, 𝐻2)]



What if Everything (but 𝑒) is Public?

𝑆1

𝑆2

𝛿(𝑝𝐻1 − 𝑐)
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What if Everything (but 𝑒) is Public?

𝑆1

𝑆2

𝛿(𝑝𝐻1 − 𝑐)

𝛿(𝑝𝐻2 − 𝑐)

Each agent can walk away:

0 ≤ 𝐵1 ≤ 𝛿(𝑝𝐻1 − 𝑐)𝑞1(𝑦)

0 ≤ 𝐵2 ≤ 𝛿(𝑝𝐻1 − 𝑐)𝑞1(𝑦)

𝑏1 + 𝑏2 ≤ 𝛿(𝑝(𝑞1𝐻1 + 𝑞2𝐻2) − 𝑐)



What if Everything (but 𝑒) is Public?

𝑆1

𝑆2

𝛿(𝑝𝐻1 − 𝑐)

𝛿(𝑝𝐻2 − 𝑐)
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𝐵1 + 𝐵2 ≤ 𝛿(𝑝(𝑞1𝐻1 + 𝑞2𝐻2) − 𝑐)



What if Everything (but 𝑒) is Public?

0 ≤ 𝐵1 ≤ 𝛿(𝑝𝐻1 − 𝑐)𝑞1(𝑦)

0 ≤ 𝐵2 ≤ 𝛿(𝑝𝐻1 − 𝑐)𝑞1(𝑦)

𝑆1

𝑆2

𝛿(𝑝𝐻1 − 𝑐)

𝑞1

𝑞2

𝑞1 + 𝑞2 = 1

𝛿(𝑝𝐻2 − 𝑐)

Reneging can be jointly punished:

𝐵1 + 𝐵2 ≤ 𝛿(𝑝(𝑞1𝐻1 + 𝑞2𝐻2) − 𝑐)



What if Everything (but 𝑒) is Public?

0 ≤ 𝐵1 ≤ 𝛿(𝑝𝐻1 − 𝑐)𝑞1(𝑦)

0 ≤ 𝐵2 ≤ 𝛿(𝑝𝐻1 − 𝑐)𝑞1(𝑦)

𝑆1

𝑆2

𝛿(𝑝𝐻1 − 𝑐)

Credible 𝐵1, 𝐵2

𝛿(𝑝𝐻2 − 𝑐)

Reneging can be jointly punished:

𝐵1 + 𝐵2 ≤ 𝛿(𝑝(𝑞1𝐻1 + 𝑞2𝐻2) − 𝑐)



No Biases if Monitoring is Public

0 ≤ 𝐵1 ≤ 𝛿(𝑝𝐻1 − 𝑐)𝑞1(𝑦)

0 ≤ 𝐵2 ≤ 𝛿(𝑝𝐻1 − 𝑐)𝑞1(𝑦)

𝑆1

𝑆2

𝛿(𝑝𝐻1 − 𝑐)

Credible 𝐵1, 𝐵2

𝛿(𝑝𝐻2 − 𝑐)

Reneging can be jointly punished:

𝐵1 + 𝐵2 ≤ 𝛿(𝑝(𝑞1𝐻1 + 𝑞2𝐻2) − 𝑐)
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One principal, N agents: risk-neutral, common discount factor 𝛿

Public state of the world 𝜃

Principal makes decision 𝑑 from set 𝐷

Agent 𝑖’s output: 𝑃𝑖(𝑦𝑖|𝑒𝑖 , 𝜃, 𝑑)

A policy is a history-contingent decision plan

Model Ingredients

effort state decision



Hiring / Firing: D = agents available; 𝜃 = demand; 𝑑 = agents hired

Promotion: D = set of agents up for promotion; 𝑑 = agent promoted

Irreversible investment: D = set of agents (if no investment yet), 

chosen agent otherwise; 𝑑 = agent chosen for investment

Sourcing decision: D = set of available suppliers; 𝜃 = each supplier’s 

productivity; 𝑑 = supplier chosen

Examples of Decisions
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Stage Game



1 2 3 4 5 6 7

Stage Game

Decision set 𝐷𝑡
State 𝜃𝑡

1: Decision set 𝐷𝑡 and state 𝜃𝑡 drawn from 𝐹( ⋅ | 𝜃𝑡′, 𝐷𝑡′, 𝑑𝑡′ 𝑡′=0
𝑡−1 ).

Publicly observed.



2: Principal chooses decision 𝑑𝑡 ∈ 𝐷𝑡. Publicly observed.

1 2 3 4 5 6 7

Stage Game

Decision set 𝐷𝑡
State 𝜃𝑡

P chooses 𝑑𝑡



3: Principal and each agent pay each other 𝑤𝑖,𝑡 ∈ ℝ. Principal sends

messages {𝑚𝑖,𝑡}𝑖=1
𝑁 to each agent. Bilaterally observed.

1 2 3 4 5 6 7

Stage Game

Decision set 𝐷𝑡
State 𝜃𝑡

P chooses 𝑑𝑡 Transfers 𝑤𝑖,𝑡

Messages 𝑚𝑖,𝑡



4: Each agent 𝑖 accepts or rejects, 𝑎𝑖,𝑡 ∈ {0,1}. Outside 

option ത𝑢𝑖(𝑑𝑡 , 𝜃𝑡) ≥ 0 results in 𝑦𝑖,𝑡 = 0. Bilaterally observed.
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5: If 𝑖 accepts, chooses effort 𝑒𝑖,𝑡 ≥ 0 at cost 𝑐(⋅). Privately observed.
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6: Output 𝑦𝑖,𝑡 ∈ ℝ+ realized according to 𝑃𝑖(⋅ |𝑒𝑖,𝑡, 𝜃𝑡 , 𝑑𝑡).
Bilaterally observed. 
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Decision set 𝐷𝑡
State 𝜃𝑡

7: Principal and agent 𝑖 exchange (net) transfers 𝜏𝑖,𝑡 ∈ ℝ.

Bilaterally observed. 
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Stage Game

P chooses 𝑑𝑡 Transfers 𝑤𝑖,𝑡

Messages 𝑚𝑖,𝑡

Accept? 𝑎𝑖,𝑡 Effort 𝑒𝑖,𝑡 Output 𝑦𝑖,𝑡 Transfers 𝜏𝑖,𝑡



Payoffs and Information

𝜋𝑡 = (1 − 𝛿)෍
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𝑢𝑖,𝑡 = (1 − 𝛿)(𝑤𝑖,𝑡 + 𝜏𝑖,𝑡 − (𝑎𝑖,𝑡𝑐(𝑒𝑖,𝑡) − (1 − 𝑎𝑖,𝑡)ത𝑢𝑖))
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Payoffs and Information

𝜋𝑡 = (1 − 𝛿)෍

𝑖≤𝑁

(𝑦𝑖,𝑡 − 𝑤𝑖,𝑡 − 𝜏𝑖,𝑡)

𝑢𝑖,𝑡 = (1 − 𝛿)(𝑤𝑖,𝑡 + 𝜏𝑖,𝑡 − (𝑎𝑖,𝑡𝑐(𝑒𝑖,𝑡) − (1 − 𝑎𝑖,𝑡)ത𝑢𝑖))𝐶𝑖,𝑡)

Dyad-surplus: 𝑆𝑖,𝑡 = σ𝑡′≥𝑡 𝛿
𝑡′−𝑡(1 − 𝛿)(𝑦𝑖,𝑡′ − 𝐶𝑖,𝑡′)

Histories: ℎ0
𝑡 at start of period, ℎ𝑥

𝑡 after variable 𝑥, agent 𝑖 sees 𝜙𝑖(ℎ𝑥
𝑡 )



A Perfect Bayesian Equilibrium 𝜎∗ is a recursive equilibrium if, for 

each ℎ0
𝑡 on equilibrium path, 𝜎∗|ℎ0

𝑡 is a Perfect Bayesian Equilibrium.

Recursive Equilibrium



A Perfect Bayesian Equilibrium 𝜎∗ is a recursive equilibrium if, for 

each ℎ0
𝑡 on equilibrium path, 𝜎∗|ℎ0

𝑡 is a Perfect Bayesian Equilibrium.

Implications for behavior:

• Agent 𝑖’s effort IC constraint conditions on ℎ0
𝑡 , not 𝜙𝑖(ℎ0

𝑡)

• When paying 𝜏𝑖,𝑡, agent 𝑖 has Bayesian expectations over 𝑦−𝑖,𝑡

Recursive Equilibrium



A recursive equilibrium 𝜎∗ is surplus-maximizing if it maximizes ex 

ante total surplus among recursive equilibria. It is sequentially surplus-

maximizing if 𝜎∗|ℎ0
𝑡 is surplus-maximizing for every on-path history ℎ0

𝑡 .

A biased decision is not sequentially surplus-maximizing

A policy is backward-looking if it involves on-path biased decisions

Surplus-Maximizing Relational Contracts
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• The Role of Private Monitoring
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Main Results

Necessary and sufficient conditions for relational contract to be self-

enforcing: IC and agent-specific dynamic enforcement constraints

Biased decisions are surplus-maximizing in smooth games



Credible Reward Schemes

Given a rel. con. 𝜎, a reward scheme 𝐵 is credible in 𝝈 if it satisfies:

1. Incentive compatibility: for each 𝑖

2. Dynamic enforcement: for each 𝑖 and for each on-path ℎ𝑦
𝑡

(𝑎𝑖,𝑡, 𝑒𝑖,𝑡) ∈ argmax 𝐸𝑦[𝐵𝑖(𝑦)|𝑎, 𝑒] − (1 − 𝛿)𝐶𝑖
𝑎, 𝑒

𝛿𝐸[ഥ𝑈𝑖] ≤ 𝐵𝑖(𝑦𝑡) ≤ 𝛿𝐸[𝑆𝑖,𝑡+1|𝑦𝑖,𝑡]



Necessary and Sufficient Conditions

1. If 𝜎∗ is a self-enforcing relational contract, then there exists a 

reward scheme 𝐵∗ that is credible in 𝜎∗.
– IC is immediate.

– 𝐵𝑖
∗ ≥ ഥ𝑈𝑖 or else agent would walk away.

– 𝐵𝑖
∗ ≤ 𝛿𝐸[𝑆𝑖,𝑡+1|𝑦𝑖,𝑡] or else principal would walk away from 𝑖

2. If 𝜎 is a relational contract with a credible reward scheme 𝐵, then 

there is a self-enforcing relational contract 𝜎∗ inducing same joint 

distribution over states, decisions, efforts, and outputs.

– Get agents to choose prescribed effort: fines via ex post transfers 

– Get principal to choose prescribed policy: transfer expected output plus expected 

fines to agent via wages
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Necessary and Sufficient Conditions

1. If 𝜎∗ is a self-enforcing relational contract, then there exists a 

reward scheme 𝐵∗ that is credible in 𝜎∗.
– IC is immediate.

– 𝐵𝑖
∗ ≥ ഥ𝑈𝑖 or else agent would walk away.

– 𝐵𝑖
∗ ≤ 𝛿𝐸[𝑆𝑖,𝑡+1|𝑦𝑖,𝑡] or else principal would walk away from 𝑖

2. If 𝜎 is a relational contract with a credible reward scheme 𝐵, then 

there is a self-enforcing relational contract 𝜎∗ inducing same joint 

distribution over states, decisions, efforts, and outputs.

– Need to get principal to choose policy and agents to choose efforts in 𝜎

– Transfer expected surplus to agents via wages: principal willing to choose policy

– Output-contingent fines set to give agent 𝐵 after paying them: agents willing to 

pay these fines, since 𝐵 is credible, and willing to choose efforts 
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Backward-looking Policies in Smooth Games

𝑆2

𝑆1

First-order 

increase in 𝑆2

First-order 

decrease in 𝑆1

Direct

Cost

Incentive

Cost

Incentive

Benefit

Second-order decrease

in continuation surplus

≈ 0



Backward-looking Policies in Smooth Games

𝑆2

𝑆1

If agent 2 “performed well” in past,

larger bonus increases effort (first-order)...

Direct

Cost

Incentive

Cost

Incentive

Benefit

≈ 0 > 0



Backward-looking Policies in Smooth Games

𝑆2

𝑆1

If agent 1 has never “performed well,” upper 

bound on reward does not bind

Direct

Cost

Incentive

Cost

Incentive

Benefit

≈ 0 > 0= 0



Backward-looking Policies in Smooth Games

𝑆2

𝑆1

Result: at such histories, biased decisions 

lead to first-order increase in effort, 

second-order decrease in continuation 

surplus

Direct

Cost

Incentive

Cost

Incentive

Benefit

≈ 0 > 0= 0

+ <



Two Complications

1. Providing conditions on the primitives that ensure the frontier 

between any two agents is differentiable.

2. With 𝑁 ≥ 2, not obvious that incentive cost is zero, as other 

agents’ dynamic enforcement constraints might bind



Smooth Mean-Shifting Games

1. Decisions are weights 𝑑𝑖,𝑡 ≥ 0 assigned to each agent σ𝑖 𝑑𝑖,𝑡 ≤ 1

2. States of the world 𝜃𝑡 are i.i.d.

3. Outside options ത𝑢𝑖 depend only on states of the world

4. Effort costs 𝑐 ⋅ are smooth, strictly increasing, and strictly convex

5. Output distributions: 𝑃𝑖
𝐻 FOSD 𝑃𝑖

𝐿 and

𝑃𝑖(𝑦𝑖|𝜃, 𝑑, 𝑒𝑖) = (1 − 𝑒𝑖)𝑃𝑖
𝐿(𝑦𝑖 − 𝛾𝑖(𝜃, 𝑑)) + 𝑒𝑃𝑖

𝐻(𝑦𝑖 − 𝛾𝑖(𝜃, 𝑑))



Main Result

Define:           𝑒𝑖
𝐹𝐵 𝑑𝑖 , 𝜃 = argmax𝐸 𝑦𝑖 𝑑𝑖 , 𝜃, 𝑒𝑖 − 𝑐(𝑒𝑖)

In a smooth mean-shifting game, let 𝜎∗ be a surplus-maximizing 

recursive equilibrium

For agents 𝑖, 𝑗, consider a history ℎ0
𝑡+1 such that:

1. Agent 𝑖 chooses positive effort less than 𝑒𝑖
𝐹𝐵 in 𝑡

2. Agent 𝑖’s output had strictly positive score in 𝑡

3. Agent 𝑗’s output had weakly negative score for all 𝑡′ ≤ 𝑡

4. Both 𝑖 and 𝑗 have positive weight (𝑑𝑖,𝑡 , 𝑑𝑗,𝑡 > 0)

Result: for almost all such ℎ0
𝑡+1, 𝜎∗|ℎ0

𝑡+1 is not surplus-maximizing 



Main Result

Define:           𝑒𝑖
𝐹𝐵 𝑑𝑖 , 𝜃 = argmax𝐸 𝑦𝑖 𝑑𝑖 , 𝜃, 𝑒𝑖 − 𝑐(𝑒𝑖)

In a smooth mean-shifting game, let 𝜎∗ be a surplus-maximizing 

recursive equilibrium

Result: Consider a smooth mean-shifting game. Suppose that 

lim
𝑑𝑖→0

𝜕𝛾𝑖/𝜕𝑑𝑖 = ∞, min
𝑒𝑖

𝑐′(𝑒𝑖) = 0 for all 𝑖. Then there are 𝛿𝐿 < 𝛿𝐻 such 

that for all 𝛿 ∈ [𝛿𝐿 , 𝛿𝐻], no surplus-maximizing relational contract is 

sequentially surplus-maximizing.



Why is Dyad-Surplus Frontier Smooth?

𝑆2

𝑆1

Show these payoffs are

attainable in equilibrium 

and smooth
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Hiring Model

Decision: how many workers to hire in each period: 𝐷𝑡 = {1,2}

State: demand, growing, persistent. Θ = {𝑊, 𝑅} with 0 < 𝑊 < 𝑅

• If demand is weak, it becomes robust with probability 𝜌

• If demand is robust, it remains robust

Binary effort: 𝑒𝑖,𝑡 ∈ {0,1} at cost 𝑐𝑒𝑖,𝑡

Per-worker productivity falls in number of workers hired:

• 𝑦𝑖,𝑡 = 𝜃𝑡𝑒𝑖,𝑡 if 𝑑𝑖,𝑡 = 1 and 𝑦𝑖,𝑡 = 𝜃𝑡𝛼𝑒𝑖,𝑡 if 𝑑𝑖,𝑡 = 2, 𝛼 < 1



Delayed Growth

Assume:

1. In first-best, should hire one when demand weak, two when robust

2. Dyad-surplus larger when demand is robust

There exist 𝛿𝐿 < 𝛿𝐻 such that for 𝛿 ∈ (𝛿𝐿 , 𝛿𝐻), any surplus-maximizing 

relational contract satisfies:

1. If 𝜃0 = 𝑅, then 𝑑𝑡 = 2 in every period 𝑡

2. If 𝜃0 = 𝑊, then 𝑑𝑡 = 1 whenever 𝜃𝑡 = 𝑊. Moreover, there exists 

𝑡′ > 0 such that Pr[𝑑𝑡′ = 1, 𝜃𝑡′ = 𝐺] > 0
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Decision = one-time, permanent investment in one agent

• Investment increases agent output for fixed effort

• Agents have differing returns from investment

• Moral hazard: output is stochastic

Result: award investment in a tournament

• Distort investment: if low-return agent performs well, gets investment

• Agent with investment produces more in future, so can be promised larger reward

Permanent Investment
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Sequentially Surplus-Maximizing PBE

Definition: Let ത𝑉 = max𝐸𝜎∗[σ𝑖 𝑆𝑖,0]. Then a PBE is a sequentially

surplus-maximizing PBE if in each 𝑡 ≥ 0, ത𝑉 = 𝐸𝜎∗[σ𝑖 𝑆𝑖,𝑡].

Result: Consider a smooth mean-shifting game. Suppose that 
lim
𝑑𝑖→0

𝜕𝛾𝑖/𝜕𝑑𝑖 = ∞, min
𝑒𝑖

𝑐′(𝑒𝑖) = 0 for all 𝑖. Then there are 𝛿𝐿 < 𝛿𝐻 such 

that for all 𝛿 ∈ [𝛿𝐿 , 𝛿𝐻], no surplus-maximizing PBE is a sequentially 
surplus-maximizing PBE.

• Seq. surplus-max PBE →
𝜕𝛾𝑖

𝜕𝑑𝑖
=

𝜕𝛾𝑗

𝜕𝑑𝑗
for all 𝑖 and 𝑗, so 𝑑𝑡

∗ is uniquely determined

• Seq. surplus-max PBE → Seq. surplus-max RE

• But surplus-max RE is not seq. surplus-max, so neither is surplus-max PBE

𝜎∗|𝜎∗ ∈ 𝑃𝐵𝐸
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Suppose all variables (except effort) publicly observed

Biased decisions decrease total continuation surplus

Result: if monitoring is imperfect but public, then any surplus-

maximizing relational contract is sequentially surplus-maximizing

Public Monitoring
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Modification of hiring application: deviations are 𝜖-private

• The first time 𝑖 chooses 𝑎𝑖,𝑡 = 0, all agents observe this with probability 1 − 𝜖

• Otherwise, only principal observes it. Subsequent 𝑎𝑖,𝑡 = 0 only observed by principal.

Result: if 𝜖 > 0, there is an open set of parameters under which no 

surplus-maximizing rel. con. is sequentially surplus-maximizing

• If principal reneges on 𝑖, all agents observe subsequent rejection w/prob 1 − 𝜖 and 

punish, destroying total surplus 𝛿𝐸[σ𝑖≤𝑁 𝑆𝑖,𝑡+1]

• Otherwise, only 𝑖 punishes principal, destroying surplus 𝛿𝐸[𝑆𝑖,𝑡+1]

• 𝑖’s dyad-surplus looms larger for principal than 𝑗’s dyad-surplus

Imperfectly Coordinated Punishment
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Flexible framework of backward-looking policies in relational contracts

• Decisions make past promises credible, rather than maximizing future surplus

Biases important for broad class of games

• If (and only if) agents cannot coordinate punishments

• Relational contracts evolve in history-dependent ways

Biases manifest in realistic ways

• Lagged hiring, delayed investment

Conclusion
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Contributions

General model of policies in relational contracts

Biased decisions optimal among recursive equilibria in a class of games

Show that equilibrium refinement does not drive result

Applications to hiring lags and distorted investments



Smooth Games

1. 𝑆𝑖 frontier is downward-sloping

• Decisions are weights 𝑑𝑖,𝑡 ≥ 0 assigned to each agent σ𝑖 𝑑𝑖,𝑡 ≤ 1

• Higher 𝒅𝒊 means: higher expected 𝑦𝑖 (strictly concave) that is (weakly) more 

informative of effort (effort-independent garbling). No effect on 𝑦−𝑖.

2. 𝑆𝑖 frontier is smooth

• States of the world 𝜽 are independent of past decisions

• Outside options  ത𝑢𝑖 depend only on states of the world

• Effort costs 𝑐 ⋅ are smooth, strictly increasing, and strictly convex

3. Changing one agent’s effort can affect others’ incentives

• Output distributions 𝑷𝒊 are smooth and satisfy Mirrlees-Rogerson conditions



Smooth Games (Formal)

A game is smooth if...

• For every t, 𝐷𝑡= 𝑑1, … , 𝑑𝑁 |𝑑𝑖 ≥ 0,σ𝑖 𝑑𝑖 ≤ 1 and 𝜃𝑡 is iid

• Outside options depend only on 𝜃𝑡
• Effort costs 𝑐(⋅) are smooth, strictly increasing, and strictly convex

• 𝑃𝑖 depends only on 𝑑𝑖 , 𝜃, 𝑒𝑖; is smooth in all arguments with density 𝑝𝑖; has 

full support; is strictly MLRP-increasing in 𝑒𝑖; and satisfies CDFC

• Expected output 𝐸[𝑦𝑖|𝑑𝑖 , 𝜃, 𝑒𝑖] is strictly increasing and strictly concave in 

{𝑑𝑖 , 𝑒𝑖}

• Higher decisions are more informative: if 𝑑𝑖 ≥ ෩𝑑𝑖, then there exists an effort-

independent garbling 𝑅 𝑥𝑖 𝑦𝑖 with density 𝑟𝑖 such that

න
𝑦𝑖≤𝑦𝑖

𝑝𝑖(𝑦𝑖|𝜃, ሚ𝑑𝑖 , 𝑒𝑖)𝑑𝑦𝑖 = න
𝑦𝑖≤ ത𝑦𝑖

𝑟𝑖 𝑥 𝑦𝑖 𝑝𝑖 𝑦𝑖 𝜃, 𝑑𝑖 , 𝑒𝑖 𝑑𝑦𝑖



Statement of Main Result (Formal)

Define:           𝑒𝑖
𝐹𝐵 𝑑𝑖 , 𝜃 = argmax𝐸 𝑦𝑖 𝑑𝑖 , 𝜃, 𝑒𝑖 − 𝑐(𝑒𝑖)

In a smooth game, let 𝜎∗ be a surplus-maximizing recursive equilibrium

For agents 𝑖, 𝑗, let 𝐸𝑡 be a set of histories ℎ0
𝑡+1 such that:

1. 𝑒𝑖,𝑡 > 0 but 𝑒𝑖,𝑡 < 𝑒𝑖
𝐹𝐵(𝑑𝑖 , 𝜃)

2.
ൗ

𝜕𝑝𝑖
𝜕𝑒𝑖

𝑝𝑖
𝑦𝑖,𝑡 𝑑𝑖,𝑡, 𝜃𝑡 , 𝑒𝑖,𝑡 > 0

3.
൘

𝜕𝑝𝑗
𝜕𝑒𝑗

𝑝𝑗
𝑦𝑗,𝑡′ 𝑑𝑗,𝑡′ , 𝜃𝑡′ , 𝑒𝑗,𝑡′ ≤ 0 for all 𝑡′ ≤ 𝑡

4. 𝑑𝑖,𝑡+1 < 1 and 𝑑𝑗,𝑡+1 > 0 with positive probability

Result: for almost every h0
t+1 ∈ 𝐸𝑡, 𝜎

∗|ℎ0
𝑡+1 is not surplus-maximizing 

𝑒𝑖



Smooth Mean-Shifting Games

A smooth game is a smooth mean-shifting game if and 𝜃𝑡 are i.i.d. and:

Result: Consider a smooth mean-shifting game. Suppose that 

lim
𝑑𝑖→0

𝜕𝛾𝑖/𝜕𝑑𝑖 = ∞, min
𝑒𝑖

𝑐′(𝑒𝑖) = 0 for all 𝑖. Then there are 𝛿𝐿 < 𝛿𝐻 such 

that for all 𝛿 ∈ [𝛿𝐿 , 𝛿𝐻], no surplus-maximizing relational contract is 

sequentially surplus-maximizing.

𝑃𝑖(𝑦𝑖|𝜃, 𝑑, 𝑒𝑖) = (1 − 𝑒𝑖)𝑃𝑖
𝐿(𝑦𝑖 − 𝛾𝑖(𝜃, 𝑑)) + 𝑒𝑃𝑖

𝐻(𝑦𝑖 − 𝛾𝑖(𝜃, 𝑑))


