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The Problem 

 

The US healthcare system is famously inefficient. Analysts highlight the 

role of inefficient incentives and organizational forms. 

 

 

But why have inefficient incentives and organizational forms persisted? 

 

 

Our paper focuses specifically on organizational fragmentation. 

 

 

 

 

 

 



Organizational Fragmentation 

 

Inefficiencies result from care delivery spread across many, poorly 

coordinated, independent providers 

 

 

Inefficiencies are worse when providers are working as independent 

owners of small practices 

 

 

Inefficiencies especially severe for patients with chronic conditions who 

account for the bulk of healthcare expenditures 

 

 

 

 

 



The Organizational Fragmentation Puzzle 

 

Fragmentation is a decades-old problem, so competition ought to have 

forced inefficient organizational forms out of the market. 

 

 

Why didn’t this happen? 

 

• Maybe fragmentation isn’t so inefficient 

 

• Maybe there are factors inhibiting the operation of market forces 



Our Argument in Three Steps: 

 

1. Moving from fragmented to integrated care delivery involves large 

investments by providers in new HIT and management processes 

 

 

2. Physicians realize a return on these investments when payers write 

contracts that share cost-savings with providers 

 

 

3. Payers’ willingness to write such efficient incentive contracts are 

inhibited by “common-agency” problems 

 

 

 

 

 

 



Lumpy Investments Required 

 

Health IT: electronic medical records, clinical decision support 

 

 

Managerial processes: payment methods, prospective budgets and 

resource planning, performance measurement systems, methods to 

disburse shared savings 

 

 

Under common agency, lumpiness creates “sticking points” that can 

lead to multiple Pareto-ranked equilibria 

 



What is the Common-Agency Problem? 

 

When multiple principals influence actions of a common agent 

 

 

Common agent is a provider; the principals are insurance companies 
(Aetna, etc.) and other payers (including, especially, Medicare) 

 

 

Each payer would like the provider to invest in integrated care 

 

 

Provider incentives depend on the contracts they have with all their 
payers, and payers simultaneously & noncooperatively offer contracts 

 



Why Introduce a Common-Agency Model? 

 

The framework fits the institutional setting and has rarely been applied 

to health care (for a notable exception, see Glazer and McGuire) 

 

 

Common-agency models have distinctive implications for: 

 

• The severity and nature of the market failure leading to inefficient 

incentives and organizations 

 

• Policy initiatives aimed at overcoming these market failures 



Results 1: The Nature of Market Failures 

 

Distortions are more severe than in standard agency models 

 

 

Two types of distortions: free-rider problems and coordination failures 

 

 

Coordination failures may occur when payers seek to elicit “lumpy” 

investments (such as new technology and management processes) 

 



Results 2: Healthcare Policy 

 

Medicare is now mandated to write cost-sharing incentive contracts 

with Accountable Care Organizations (ACOs). Two goals: 

 

1. Subsidize investments in integrated care 

 

2. Jump-start private sector cost-sharing contracts 

 



Results 2: Healthcare Policy 

 

Our model generates both “subsidy” and “jump-start” effects. We find: 

 

1. ACOs serve to subsidize invest but crowd out private contracts 

 

2. If payers are stuck in inefficient eqbm, sufficiently large 

interventions can trigger positive changes in private contracts 

 

3. But weak interventions will have no effect. 
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Model Ingredients 

 

𝑁 symmetric risk-neutral Payers, single risk-neutral Provider 

 

 

Binary public outcome: “success” or “failure” 

 

 

Payers simultaneously offer bonus payments to be paid if “success” 

 

 

Provider chooses action that determines probability of “success” 
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Notation and Terminology 
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Results 

 

Distortions are more severe than in standard agency models 

 

 

Two types of distortions: free-rider problems and coordination failures 

 

 

Coordination failures may occur when there are “sticking points” 

 

 

Both types of distortions are worse when there are more payers 
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ACO Interventions 

 

Direct intervention 𝐼 paid to provider if there is success 
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Results of ACO Interventions 

 

ACO interventions serve as “subsidies” and “jump starts.” We find: 

 

1. ACOs serve to subsidize invest but crowd out private contracts 

 

2. If payers are stuck in inefficient eqbm, sufficiently large 

interventions can trigger positive changes in private contracts 

 

3. But weak interventions will have no effect 
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“Sticking Points” 

 

The convexification of 𝑐 on [0,1] is the largest convex function on [0,1] 
with 𝑐 (𝑎) ≤ 𝑐(𝑎) 

 

 

Action 𝑎  is incentive-feasible if 𝑐 (𝑎 ) = 𝑐(𝑎 ). Denote by 𝑎 ∈ 𝐴𝑓𝑒𝑎𝑠 

 

 

There is a sticking point at action 𝑎 < 𝑚𝑎𝑥{𝑎|𝑎𝑎 ∈ 𝐴𝑓𝑒𝑎𝑠} if 𝑐  is not 

differentiable at 𝑎  
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An action 𝑎∗ is an equilibrium action if and only if 𝑎∗ solves 

 

 

 

 

max
𝑎∈𝐴𝑓𝑒𝑎𝑠

1

𝑁
𝐵𝑎 − 𝐶𝑖(𝑎, 𝑎

∗)𝑎)  



Characterization of Equilibrium Actions 

 

An action 𝑎∗ is an equilibrium action if and only if 𝑎∗ solves 

 

 

 

 

max
𝑎∈𝐴𝑓𝑒𝑎𝑠

1

𝑁
𝐵𝑎 − 𝐶𝑖(𝑎, 𝑎

∗)𝑎)  

𝐶𝑖(𝑎, 𝑎
∗) = 𝐶(𝑎) − (1 −

1

𝑁
)𝑏𝑎∗

∗ 𝑎 



Characterization of Equilibrium Actions 

 

An action 𝑎∗ is an equilibrium action if and only if 𝑎∗ solves 

 

 

 

 

max
𝑎∈𝐴𝑓𝑒𝑎𝑠

1

𝑁
𝐵𝑎 − 𝐶𝑖(𝑎, 𝑎

∗)𝑎)  

𝐶𝑖(𝑎, 𝑎
∗) = 𝑚𝑎𝑥{𝐶(𝑎), (1 −

1

𝑁
)𝑏𝑎∗

∗ 𝑎𝑀} − (1 −
1

𝑁
)𝑏𝑎∗

∗ 𝑎 



Characterization of Equilibrium Actions 

 

An action 𝑎∗ is an equilibrium action if and only if 𝑎∗ solves 

 

 

 

 

 

 

Theorem: The set of equilibrium actions is nonempty. 
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Two Conditions 

 

Condition CR (Convex Rents): The quantity 

 

𝑍(𝑎, 𝑎′) =
𝑀𝐴𝐶−(𝑎) − 𝑀𝐴𝐶−(𝑎′)

𝑎 − 𝑎′
 

 

is increasing in 𝑎, 𝑎′ for all incentive-feasible 𝑎, 𝑎′. 

 

 

Condition W (Well-Behaved): 𝑐 is defined on [0,1], is thrice-

differentiable, 𝑐′(0) = 0, 𝑐′, 𝑐′′ > 0 for all 𝑎 > 0, and 𝑐′′′ ≥ 0.  
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“Sticking Points” Necessary and Sufficient 

 

 

Proposition: Suppose Condition CR holds. The following are true: 

1. If 𝑎𝐿
∗ < 𝑎𝐻

∗ , then there is a sticking point at some 𝑎∗; 

2. If there is a sticking point at action 𝑎 , then there exists some 𝐵 for 

which 𝑎𝐿
∗ = 𝑎  and 𝑎𝐻

∗ > 𝑎 ; 

3. If Condition W holds, then 𝑎𝐿
∗ = 𝑎𝐻

∗ ; 

4. All equilibrium actions are bounded from above by 𝑎𝑆𝐵. 



Equilibrium Actions Pareto Rankable 

 

 

Proposition: Suppose Condition CR holds. If there are multiple 

equilibrium actions, 𝑎∗ and 𝑎∗∗ > 𝑎∗, then: 

1. There exists an equilibrium with action 𝑎∗∗ that Pareto dominates 

an equilibrium with action 𝑎∗; 

2. There does not exist an equilibrium with action 𝑎∗ that Pareto 

dominates any equilibrium with action 𝑎∗∗. 
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Conclusion 

 

Theory of incentive contracts: identify conditions under which 

coordination failures arise. This aspect has not been explored. 

 

 

Application to healthcare:  

 

1. We model persistent inefficiencies in U.S. healthcare as resulting 

from common-agency problems. 

 

2. The effects of policy initiatives depends on the types of actions 

being contracted for and whether there are coordination failures. 

 


