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Incentives in Organizations, Part II: Career Concerns and Relational Contracts

No Contracts

In many environments, contractible measures of performance may be so bad as to render

them useless. Yet, aspects of performance that are relevant for the firm’s objectives may

be observable, but for whatever reason, they cannot be written into a formal contract that

the firm can commit to. These aspects of performance may then form the basis for informal

reward schemes. We will discuss two classes of models that build off this insight.

Career Concerns

An Agent’s performance within a firm may be observable to outside market participants– for

example, fund managers’returns are published in prospectuses, academics post their papers

online publicly, a CEO’s performance is partly announced in quarterly earnings reports.

Holmström (1982/1999) developed a model to show that in such an environment, even when

formal performance-contingent contracts are impossible to write, workers may be motivated

to work hard out of a desire to convince “the market”that they are intrinsically productive

in the hopes that doing so will attract favorable outside offers in the future– that is, they

are motivated by their own career concerns.

Description There are two risk-neutral Principals, whom we will denote by P1 and P2,

and a risk-neutral Agent (A) who interact in periods t = 1, 2. The Agent has ability θ, which

is drawn from a normal distribution, θ ∼ N
(
m0, h

−1
0

)
. θ is unobservable by all players, but

all players know the distribution from which it is drawn. In each period, the Agent chooses

an effort level et ∈ E at cost c (et) (with c (0) = c′ (0) = 0 < c′, c′′) that, together with his
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ability and luck (denoted by εt), determine his output yt ∈ Y as follows:

yt = θ + et + εt.

Luck is also normally distributed, εt ∼ N (0, h−1
ε ) and is independent across periods and

independent from θ. This output accrues to whichever Principal employs the Agent in period

t. At the beginning of each period, each Principal i offers the Agent a short-term contract

wi ∈ W ⊂ {wi : M → R}, where M is the set of outcomes of a performance measure. The

Agent has to accept one of the contracts, and if he accepts Principal i’s contract in period

t, then Principal j 6= i receives 0 in period t. For now, we will assume that there are no

available performance measures, so short-term contracts can only take the form of a constant

wage.

Comment on Assumption. Do you think the assumption that the Agent does not know

more about his own productivity than the Principals do is sensible?

If Principal Pi employs the Agent in period t, the agent chooses effort et, and output yt

is realized, payoffs are given by

πi (wit, et, yt) = pyt − wit

πj (wit, et, yt) = 0

ui (wit, et, yt) = wit − c (et) .

Players share a common discount factor of δ < 1.

Timing There are two periods t = 1, 2. In each period, the following stage game is played:

1. P1 and P2 propose contracts w1t and w2t. These contracts are commonly observed.

2. A chooses one of the two contracts. The Agent’s choice is commonly observed. If A

chooses the contract offered by Pi, denote his choice by dt = i. The set of choices is
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denoted by D = {1, 2}.

3. A receives transfer wit. This transfer is commonly observed.

4. A chooses effort et and incurs cost c (et). et is only observed by A.

5. Output yt is realized and accrues to Pi. yt is commonly observed.

Equilibrium The solution concept is pure-strategy Perfect-Bayesian Equilibrium. APerfect-

Bayesian Equilibrium of this game consists of a strategy profile σ∗ =
(
σ∗P1 , σ

∗
P2
, σ∗A

)
and a

belief profile µ∗ (defining beliefs of each player about the distribution of θ at each information

set) such that σ∗ is sequentially rational for each player given his beliefs (i.e., each player

plays the best response at each information set given his beliefs) and µ∗ is derived from σ∗

using Bayes’s rule whenever possible.

It is worth spelling out in more detail what the strategy space is. By doing so, we can get

an appreciation for how complicated this seemingly simple environment is, and how different

assumptions of the model contribute to simplifying the solution. Further, by understanding

the role of the different assumptions, we will be able to get a sense for what directions the

model could be extended without introducing great complexity.

Each Principal i chooses a pair of contract-offer strategies w∗i1 : ∆ (Θ) → R and w∗i2 :

W 2 × D × Y × ∆ (Θ) → R. The first-period offers depend only on each Principal’s beliefs

about the Agent’s type (as well as their equilibrium conjectures about what the Agent will

do). The second-period offer can also be conditioned on the first-period contract offerings,

the Agent’s first-period contract choice, and the Agent’s first-period output. In equilibrium,

it will be the case that these variables determine the second-period contract offers only

inasmuch as they determine each Principal’s beliefs about the Agent’s type.

The Agent chooses a set of acceptance strategies in each period, d1 : W 2×∆ (Θ)→ {1, 2}

and d2 : W 4×D×E×Y ×∆ (Θ)→ {1, 2} and a set of effort strategies e1 : W 2×D×∆ (Θ)→

R+ and e2 : W 4 ×D × E × Y ×∆ (Θ) → R+. In the first period, the agent chooses which
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contract to accept based on which ones are offered as well as his beliefs about his own type.

In the present model, the contract space is not very rich (since it is only the set of scalars),

so it will turn out that the Agent does not want to condition his acceptance decision on

his beliefs about his own ability. This is not necessarily the case in richer models in which

Principals are allowed to offer contracts involving performance-contingent payments. The

Agent then chooses effort on the basis of which contracts were available, which one he chose,

and his beliefs about his type. In the second period, his acceptance decision and effort choice

can also be conditioned on events that occurred in the first period.

It will in fact be the case that this game has a unique pure-strategy Perfect-Bayesian

Equilibrium, and in this Perfect-Bayesian equilibrium, both the Principals and the Agent

will use public strategies in which w∗i1 : ∆ (Θ) → R, w∗i2 : ∆ (Θ) → R, d1 : W 2 → {1, 2},

d2 : W 2 → {1, 2}, e1 ∈ R+ and e2 ∈ R+.

The Program Sequential rationality implies that the Agent will choose e∗2 = 0 in the

second period, no matter what happened in previous periods. This is because no further

actions or payments that the Agent will receive are affected by the Agent’s effort choice in

the second period. Given that the agent knows his effort choice will be the same no matter

which contract he chooses, he will choose whichever contract offers him a higher payment.

In turn, the Principals will each offer a contract in which they earn zero expected profits.

This is because they have the same beliefs about the Agent’s ability. This is the case since

they have the same prior and have seen the same public history, and in equilibrium, they have

the same conjectures about the Agent’s strategy and therefore infer the same information

about the Agent’s ability. As a result, if one Principal offers a contract that will yield him

positive expected profits, the other Principal will offer a contract that pays the Agent slightly

more, and the Agent will accept the latter contract. The second-period contracts offered will

therefore be

w∗12

(
θ̂ (y1)

)
= w∗22

(
θ̂ (y1)

)
= w∗2

(
θ̂ (y1)

)
= pE [y2| y1, σ

∗] = pE [θ| y1, σ
∗] ,
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where θ̂ (y1) is the equilibrium conditional distribution of θ given realized output y1.

If the agent chooses e1 in period 1, first-period output will be y1 = θ + e1 + ε1. Given

conjectured effort e∗1, the Principals’beliefs about the Agent’s ability will be based on two

signals: their prior, and the signal y1 − e∗1 = θ + ε1, which is also normally distributed with

mean m0 and variance h−1
0 + h−1

ε . The joint distribution is therefore θ

θ + ε1

 =

 1 0

1 1


 θ

ε1

 ∼ N


 m0

m0

 ,
 h−1

0 h−1
0

h−1
0 h−1

0 + h−1
ε




Their beliefs about θ conditional on these signals will therefore be normally distributed:

θ| y1 ∼ N

(
ϕy1 + (1− ϕ)m0,

1

hε + h0

)
,

where ϕ = hε
h0+hε

is the signal-to-noise ratio. Here, we used the normal updating formula,

which just to jog your memory is stated as follows. If X is a K × 1 random vector and Y is

an N −K random vector, then if

 X

Y

 ∼ N


 µX

µY

 ,
 ΣXX ΣXY

Σ′XY ΣY Y


 ,

then

X|Y = y ∼ N
(
µX + ΣXY Σ−1

Y Y (y − µY ) ,ΣXX − ΣXY Σ−1
Y Y Σ′XY

)
.

Therefore, given output y1, the Agent’s second-period wage will be

w∗2

(
θ̂ (y1)

)
= p [ϕ (y1 − e∗1) + (1− ϕ)m0] = p [ϕ (θ + e1 + ε1 − e∗1) + (1− ϕ)m0] .

In the first period, the Agent chooses a non-zero effort level, even though his first-period

contract does not provide him with performance-based compensation. He chooses a non-zero

effort level, because doing so affects the distribution of output, which the Principals use in
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the second period to infer his ability. In equilibrium, of course, they are not fooled by his

effort choice.

Given an arbitrary belief about his effort choice, ê1, the signal the Principals use to update

their beliefs about the Agent’s type is y1 − ê1 = θ + ε1 + e1 − ê1. The agent’s incentives to

exert effort in the first period to shift the distribution of output are therefore the same no

matter what the Principals conjecture his effort choice to be. He will therefore choose effort

e∗1 in the first period to solve

max
e1
−c (e1) + δEy1

[
w∗2

(
θ̂ (y1)

)∣∣∣ e1

]
= max

e1
−c (e1) + δp (ϕ (θ + e1 − e∗1) + (1− ϕ)m0) ,

so that he will choose

c′ (e∗1) = pδ
hε

h0 + hε
,

and if c (e) = c
2
e2,

e∗1 =
p

c
δ

hε
h0 + hε

.

This first-period effort choice is, of course, less than first-best, since first-best effort satisfies

c′
(
eFB1

)
= 1 or eFB1 = p/c. He will choose a higher effort level in the first period the less

he discounts the future (δ larger), the more prior uncertainty there is about his type (h0

small), and the more informative output is about his ability (hε large). Finally, given that

the Agent will choose e∗1, the first-period wages will be

w∗11 = w∗21 = pE [y1] = p (m0 + e∗1) .

This model has a number of nice features. First, despite the fact that the Agent receives

no formal incentives, he still chooses a positive effort level, at least in the first period.

Second, he does not choose first-best effort (indeed, in versions of the model with three or

more periods, he may initially choose excessively high effort), even though there is perfect

competition in the labor market for his services. When he accepts an offer, he cannot commit
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to choose a particular effort level, so competition does not necessarily generate effi ciency

when there are contracting frictions.

The model is remarkably tractable, despite being quite complicated. This is largely due to

the fact that this is a symmetric-information game, so players neither infer nor communicate

information about the agent’s type when making choices. The functional-form choices are

also aimed at ensuring that it not only starts out as a symmetric information game, but it also

remains one as it progresses. At the end of the first period, if one of the Principals (say the

one that the Agent worked for in the first period) learned more about the Agent’s type than

the other Principal did, then there would be asymmetric information at the wage-offering

stage in the second period.

This model extends nicely to three or more periods. In such an extension, however, if

the Agent’s effort affected the variance of output, he would have more information about

his type at the beginning of the second period than the Principals would. This is because

he would have more information about the conditional variance of his own ability, because

he knows what effort he chose. In turn, his choice of contract in the second period would

be informative about what effort level he would be likely to choose in the second period,

which would in turn influence the contract offerings. If ability and effort interact, and their

interaction cannot be separated out from the noise with a simple transformation (e.g., if

yt = θet + εt), then the Agent would acquire private information about his marginal returns

to effort, which would have a similar effect. For these reasons, the model has seen very little

application to environments with more than two periods, except in a couple special cases

(see Bonatti and Hörner (2017) for a recent example with public all-or-nothing learning).

Finally, if the Agent’s effort choice affects the informativeness of the public signal (e.g.,

εt ∼ N
(
0, hε (et)

−1)), then the model may generate multiple equilibria. In particular, the
equilibrium condition for effort in the first period will be

c′ (e∗1) = pδ
hε (e∗1)

h0 + hε (e∗1)
,
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which may have multiple solutions if h′ε (et) > 0. Intuitively, if the Principals believe that the

Agent will not put in effort in t = 1, then they think the signal is not very informative, which

means that they will not put much weight on it in their belief formation. As a result, the

Agent indeed has little incentive to put in effort in period 1. So there can be self-reinforcing

low expectations of effort. There can also be self-reinforcing high expectations of effort. If

the Principals believe the Agent will put in lots of effort in t = 1, then they think the signal

will be informative, so they will put a lot of weight on it, and the Agent will therefore have

strong incentives to exert effort.

Exercise. Can the above model be extended in a straightforward way to environments with

more than 3 periods if the Agent has imperfect recall regarding the effort level he chose in

past periods?

An important source of conflicting objectives within firms is often the tension between

the firm’s desire to maximize profits and its workers’concerns for their careers. And im-

portantly, as this model shows, these incentives are not chosen by the firm but rather, they

are determined by the market and institutional context in which the firm operates. That is,

career concerns provide incidental, rather than designed, incentives.

In this model, these incidental incentives motivate productive effort. Of course, these

incentives may be excessively strong for young workers (see Landers, Rebitzer, and Taylor

(1996) for evidence of this effect in law firms), and they may be especially weak for older

workers (see Gibbons and Murphy (1992) for evidence of this effect among executives). More

generally, however, career concerns incentives may motivate employees to make decisions that

are counterproductive for the firm. If an employee is risk-averse, and he can choose between

a safe project with outcomes that are independent of his ability and a risky project with

outcomes that are more favorable if he is high-ability, he may opt for the safe project, even

if the safe project is bad for the firm. In particular, if his expected future wage is linear

in his expected ability, then since the market’s beliefs about his ability are a martingale,

he prefers the market’s beliefs to remain constant. If a professional adviser cares about her
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reputation for appearing well-informed, then she may withhold valuable information when

giving advice (Ottaviani and Sorensen, 2006).

If an employee cares about his reputation for being a quick learner, then an “Impetuous

Youngsters and Jaded Old-Timers” dynamic can arise (Prendergast and Stole, 1996). In

particular, if an employee observes private signals about payoffs of different projects, and

smarter employees have more precise information, then smarter employees will put more

weight on these private signals. Smarter employees’outcomes will therefore be more variable,

and the market understands this, so there is an incentive for employees to “go out on a

limb”by putting excessive weight on their private signals to convince the market they are

smart (i.e., “youngsters may be impetuous”). Moreover, reversing a previous decision in the

future signals, in part, that a worker’s initial information was wrong, so older workers might

ineffi ciently stick to prior decisions (i.e., “old-timers may be jaded”).

Further Reading Dewatripont, Jewitt, and Tirole (1999b) shows that when there are

complementarities between effort and the informativeness of the agent’s output, there may

be multiple equilibria. Dewatripont, Jewitt, and Tirole (1999a) explores a more-general

two-period model and examines the relationship between the information structure and the

incentives the agent faces. It also highlights the diffi culties in extending the model beyond

two periods with general distributions, since, in general, asymmetric information arises on the

equilibrium path. Bonatti and Hörner (2017) explores an alternative setting in which effort

and the agent’s ability are non-separable, but nevertheless, asymmetric information does not

arise on the equilibrium path, in particular because its information structure features all-

or-nothing learning. Cisternas (2018) sets up a tractable environment in which asymmetric

information in fact arises on the equilibrium path.

The contracting space in the analysis above was very limited– principals could only of-

fer short-term contracts specifying a fixed wage. Gibbons and Murphy (1992) allows for

principals to offer (imperfect) short-term performance-based contracts. Such contracts are
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substitutes for career-concerns incentives and become more important later in a worker’s

career, as the market becomes less impressionable. In principle, we can think of the model

above as characterizing the agent’s incentives for a particular long-term contract– the con-

tract implicitly provided by market competition when output is publicly observed. He, Wei,

Yu, and Gao (2017) characterizes the agent’s incentives for general long-term contracts in a

continuous-time version of this setting and derives optimal long-term contracts. Finally, the

firm may have other instruments available for helping shape employees’career concerns. For

example, team design in a setting where individual outputs cannot be individually observed

(Bar-Isaac, 2007), and information design in a setting where the agent’s current principal

controls the information the market observes about his output (Prat, 2005; Wolitzky, 2012;

Hörner and Lambert, 2017; Rodina, 2018).

Relational Incentive Contracts

If an Agent’s performance is commonly observed only by other members of his organization,

or if the market is sure about his intrinsic productivity, then the career concerns motives we

previously discussed cannot serve as motivation. However, individuals may form long-term

attachments with an organization. In such long-term relationships, “goodwill”can arise as

an equilibrium phenomenon, and fear of shattering this goodwill can motivate individuals

to perform well and to reward good performance. This intuition is captured in models of

relational contracts (informal contracts enforced by relationships). An entire section of the

next course in this sequence will be devoted to studying many of the issues that arise in such

models, but for now we will look at the workhorse model in the literature to get some of the

more general insights.

The workhorse model is an infinitely repeated Principal-Agent game with publicly ob-

served actions. We will characterize the “optimal relational contract”as the equilibrium of

the repeated game that either maximizes the Principal’s equilibrium payoffs or the Principal
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and Agent’s joint equilibrium payoffs. A couple comments are in order at this point. First,

these are applied models of repeated games and therefore tend to focus on situations where

the discount factor is not close to 1, asking questions like “how much effort can be sustained

in equilibrium?”

Second, such models often have many equilibria, and therefore we will be taking a stance

on equilibrium selection in their analysis. The often-made criticism that such models have

no predictive power is, as Kandori puts it “... misplaced if we regard the theory of repeated

games as a theory of informal contracts. Just as anything can be enforced when the party

agrees to sign a binding contract, in repeated games [many outcomes can be] sustained if

players agree on an equilibrium. Enforceability of a wide range of outcomes is the essential

property of effective contracts, formal or informal.” (Kandori, 2008, p. 7) Put slightly

differently, focusing on optimal contracts when discussing formal contract design is analogous

to focusing on optimal relational contracts when discussing repeated principal-agent models.

Our objective, therefore, will be to derive properties of optimal relational contracts.

Description A risk-neutral Principal and risk-neutral Agent interact repeatedly in periods

t = 0, 1, 2, . . . . In period t, the Agent chooses an effort level et ∈ E at cost c (et) = c
2
e2
t that

determines output yt = et ∈ Y, which accrues to the Principal. The output can be sold

on the product market for price p. At the beginning of date t, the Principal proposes a

compensation package to the agent. This compensation consists of a fixed salary st and a

contingent payment bt : E → R (with positive values denoting a transfer from the Principal

to the Agent and negative values denoting a transfer from the Agent to the Principal),

which can depend on the Agent’s effort choice. The Agent can accept the proposal (which

we denote by dt = 1) or reject it (which we denote by dt = 0) in favor of an outside option

that yields per-period utility ū for the Agent and π̄ for the Principal. If the Agent accepts

the proposal, the Principal is legally compelled to pay the transfer st, but she is not legally

compelled to pay the contingent payment bt.
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Timing The stage game has the following five stages

1. P makes A a proposal (bt, st).

2. A accepts or rejects in favor of outside opportunity yielding ū to A and π̄ to P .

3. P pays A an amount st.

4. A chooses effort êt at cost c (êt), which is commonly observed.

5. P pays A a transfer b̂t.

Equilibrium The Principal is not legally required to make the promised payment bt, so

in a one-shot game, she would always choose b̂t = 0 (or analogously, if bt < 0, the Agent is

not legally required to pay bt, so he would choose b̂t = 0). However, since the players are

engaged in a long-term relationship and can therefore condition future play on this transfer,

nonzero transfers can potentially be sustained as part of an equilibrium.

Whenever we consider repeated games, we will always try to spell out explicitly the

variables that players can condition their behavior on. This exercise is tedious but important.

Let ht0 =
{
s0, d0, ê0, b̂0, . . . , st−1, dt−1, êt−1, b̂t−1

}
denote the history up to the beginning of

date t. In this game, all variables are commonly observed, so the history up to date t is

a public history. We will also adopt the notation hts = ht ∪ {st}, htd = hts ∪ {dt}, and

hte = htd ∪ {êt}, so we can cleanly keep track of within-period histories. (If we analogously

defined htb, it would be the same as h
t+1
0 , so we will refrain from doing so.) Finally, let

Ht
0,Ht

s,Ht
d, and Ht

e denote, respectively, the sets of such histories.

Following Levin (2003), we define a relational contract to be a complete plan for the

relationship. It describes (1) the salary that the Principal should offer the Agent (ht0 7→ st),

(2) whether the Agent should accept the offer (hts 7→ dt), (3) what effort level the Agent

should choose (htd 7→ êt), and (4) what bonus payment the Principal should make
(
hte 7→ b̂t

)
.

A relational contract is self-enforcing if it describes a subgame-perfect equilibrium of the

repeated game. An optimal relational contract is a self-enforcing relational contract that
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yields higher equilibrium payoffs for the Principal than any other self-enforcing relational

contract. It is important to note that a relational contract describes behavior on and off the

equilibrium path.

Comment. Early papers in the relational-contracting literature (Bull, 1987; MacLeod and

Malcomson, 1989; Baker, Gibbons, and Murphy, 1994) referred to the equilibrium of the game

instead as an implicit (as opposed to relational) contract. More recent papers eschew the term

implicit, because the term “implicit contracts” has a connotation that seems to emphasize

whether agreements are common knowledge, whereas the term “relational contracts” more

clearly focuses on whether agreements are enforced formally or must be self-enforcing.

The Program Though the stage game is relatively simple, and the game has a straightfor-

ward repeated structure, solving for the optimal relational contract should in principle seem

like a daunting task. There are tons of things that the Principal and Agent can do in this

game (the strategy space is quite rich), many of which are consistent with equilibrium play–

there are lots of equilibria, some of which may have complicated dynamics. Our objective

is to pick out, among all these equilibria, those that maximize the Principal’s equilibrium

payoffs.

Thankfully, there are several nice results (many of which are contained in Levin (2003)

but have origins in the preceding literature) that make this task achievable. We will proceed

in the following steps:

1. We will argue, along the lines of Abreu (1988), that the unique stage game SPNE is

an optimal punishment.

2. We will show that optimal reward schedules are “forcing.”That is, they pay the Agent

a certain amount if he chooses a particular effort level, and they revert to punishment

otherwise. An optimal relational contract will involve an optimal reward scheme.

3. We will then show that distribution and effi ciency can be separated out in the stage
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game. Ex ante transfers have to satisfy participation constraints, but they otherwise

do not affect incentives or whether continuation payoffs are self-enforcing.

4. We will show that an optimal relational contract is sequentially optimal on the equilib-

rium path. Increasing future surplus is good for ex ante surplus, which can be divided

in any way, according to (3), and it improves the scope for incentives in the current

period. Total future surplus is always maximized in an optimal relational contract, and

since the game is a repeated game, this implies that total future surplus is therefore

constant in an optimal relational contract.

5. We will then argue that we can restrict attention to stationary relational contracts. By

(4), the total future surplus is constant in every period. Contemporaneous payments

and the split of continuation payoffs are perfect substitutes for motivating effort provi-

sion and bonus payments and for participation. Therefore, we can restrict attention to

agreements that “settle up”contemporaneously rather than reward and punish with

continuation payoffs.

6. We will then solve for the set of stationary relational contracts, which is not so com-

plicated. This set will contain an optimal relational contract.

In my view, while the restriction to stationary relational contracts is helpful for being able

to tractably characterize optimal relational contracts, the important economic insights are

actually that optimal relational contracts are sequentially optimal and how this result de-

pends on the separation of distribution and effi ciency. The separation of distribution and

effi ciency in turn depends on several assumptions: risk-neutrality, unrestricted and costless

transfers, and a simple information structure. In the next course in this sequence, we will

return to these issues and think about settings where one or more of these assumptions is

not satisfied.

Step 1 is straightforward. In the unique SPNE of the stage game, the Principal never pays

a positive bonus, the Agent exerts zero effort, and he rejects any offer the Principal makes.

14



The associated payoffs are ū for the Agent and π̄ for the Principal. It is also straightforward

to show that these are also the Agent’s and Principal’s maxmin payoffs, and therefore they

constitute part of an optimal penal code (Abreu, 1988). Define s̄ = ū+ π̄ to be the outside

surplus.

Next, consider a relational contract that specifies, in the initial period, payments w and

b (ê), an effort level e, and continuation payoffs u (ê) and π (ê). The equilibrium payoffs of

this relational contract, if accepted are:

u = (1− δ) (w − c (e) + b (e)) + δu (e)

π = (1− δ) (p · e− w − b (e)) + δπ (e) .

Let s = u+ π be the equilibrium contract surplus. This relational contract is self-enforcing

if the following four conditions are satisfied.

1. Participation:

u ≥ ū, π ≥ π̄

2. Effort-IC:

e ∈ argmax
ê
{(1− δ) (−c (ê) + b (ê)) + δu (ê)}

3. Payment:

(1− δ) (−b (e)) + δπ (e) ≥ δπ̄

(1− δ) b (e) + δu (e) ≥ δū

4. Self-enforcing continuation contract: u (e) and π (e) correspond to a self-enforcing re-

lational contract that will be initiated in the next period.
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Step 2: Define the Agent’s reward schedule under this relational contract by

R (ê) = b (ê) +
δ

1− δu (ê) .

The Agent’s no-reneging constraint implies that R (ê) ≥ δ
1−δ ū for all ê. Given a proposed

effort level e, suppose there is some other effort level ê such that R (ê) > δ
1−δ ū. Then

we can define an alternative relational contract in which everything else is the same, but

R̃ (ê) = R (ê)− ε for some ε > 0. The payment constraints remain satisfied, and the effort-

IC constraint becomes easier to satisfy. Therefore, such a change makes it possible to weakly

improve at least one player’s equilibrium payoff. Therefore, it is without loss of generality

to focus on reward schedules for which R (ê) = δ
1−δ ū for all ê 6= e.

Step 3: Consider an alternative relational contract in which everything else is the same,

but w̃ = w− ε for some ε 6= 0. This changes the equilibrium payoffs u, π to ũ, π̃ but not the

joint surplus s. Further, it does not affect the effort-IC, the payment, or the self-enforcing

continuation contract conditions. As long as ũ ≥ ū and π̃ ≥ π̄, then the proposed relational

contract is still self-enforcing.

Define the value s∗ to be the maximum total surplus generated by any self-enforcing

relational contract. The set of possible payoffs under a self-enforcing relational contract is

then {(u, π) : u ≥ ū, π ≥ π̄, u+ π ≤ s∗}. For a given relational contract to satisfy the self-

enforcing continuation contract condition, it then has to be the case that for any equilibrium

effort e,

(u (e) , π (e)) ∈ {(u, π) : u ≥ ū, π ≥ π̄, u+ π ≤ s∗} .

Step 4: Suppose the continuation relational contract satisfies u (e) + π (e) < s∗. Then

π (e) can be increased in a self-enforcing relational contract, holding everything else the

same. Increasing π (e) does not affect the effort-IC constraint, it relaxes both the Principal’s

participation and payment constraints, and it increases equilibrium surplus. The original

relational contract is then not optimal. Therefore, any optimal relational contract has to
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satisfy s (e) = u (e) + π (e) = s∗.

Step 5: Suppose the proposed relational contract is optimal and generates surplus s (e). By

the previous step, it has to be the case that s (e) = e− c (e) = s∗. This in turn implies that

optimal relational contracts involve the same effort choice, e∗, in each period. Now we want

to construct an optimal relational contract that provides the same incentives for the agent to

exert effort, for both players to pay promised bonus payments, and also yields continuation

payoffs that are equal to equilibrium payoffs (i.e., not only is the action that is chosen the

same in each period, but so are equilibrium payoffs). To do so, suppose an optimal relational

contract involves reward scheme R (ê) = δ
1−δ ū for ê 6= e∗ and

R (e∗) = b (e∗) +
δ

1− δu (e∗) .

Now, consider an alternative reward scheme R̃ (e∗) that provides the same incentives to the

agent but leaves him with a continuation payoff of u∗:

R̃ (e∗) = b̃ (e∗) +
δ

1− δu
∗ = R (e∗) .

This reward scheme also leaves him with an equilibrium utility of u∗

u∗ = (1− δ) (w − c (e∗) + b (e∗)) + δu (e∗) = (1− δ) (w − c (e∗) +R (e∗))

= (1− δ)
(
w − c (e∗) + R̃ (e∗)

)
= (1− δ)

(
w − c (e∗) + b̃ (e∗)

)
+ δu∗.

Since ū ≤ u∗ ≤ s∗ − π̄, this alternative relational contract also satisfies the participation

constraints.

Further, this alternative relational contract also satisfies all payment constraints, since

by construction,

b̃ (e∗) +
δ

1− δu
∗ = b (e∗) +

δ

1− δu (e∗) ,

and this equality also implies the analogous equality for the Principal (since s∗ = u∗ + π∗
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and s∗ = u (e∗) + π (e∗)):

−b̃ (e∗) +
δ

1− δπ
∗ = −b (e∗) +

δ

1− δπ (e∗) .

Finally, the continuation payoffs are (u∗, π∗), which can themselves be part of this exact

same self-enforcing relational contract initiated the following period.

Step 6: The last step allows us to set up a program that we can solve to find an optimal

relational contract. A stationary effort level e generates total surplus s = e − c (e). The

Agent is willing to choose effort level e if he expects to be paid a bonus b satisfying

b+
δ

1− δ (u− ū) ≥ c (e) .

That is, he will choose e as long as his effort costs are less than the bonus b and the change in

his continuation payoff that he would experience if he did not choose effort level e. Similarly,

the Principal is willing to pay a bonus b if

δ

1− δ (π − π̄) ≥ b.

A necessary condition for both of these inequalities to be satisfied is that

δ

1− δ (s− s̄) ≥ c (e) .

This condition is also suffi cient for an effort level e to be sustainable in a stationary relational

contract, since if it is satisfied, there is a b such that the preceding two inequalities are

satisfied. This pooled inequality is referred to as the dynamic-enforcement constraint.

The Program: Putting all this together, then, an optimal relational contract will involve

an effort level that solves

max
e
pe− c

2
e2
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subject to the dynamic-enforcement constraint:

δ

1− δ

(
pe− c

2
e2 − s̄

)
≥ c

2
e2.

The first-best effort level eFB = p
c
solves this problem as long as

δ

1− δ

(
peFB − c

2

(
eFB

)2 − s̄
)
≥ c

2

(
eFB

)2
,

or

δ ≥ p2

2p2 − 2cs̄
.

Otherwise, the optimal effort level e∗ is the larger solution to the dynamic-enforcement

constraint, when it holds with equality:

e∗ =
p

c

δ +

√
p2δ2 − 2δs̄c

p2

 .
For all δ < p2

2p2−2cs̄
, δ +

√
p2δ2−2δs̄c

p2
< 1, so e∗ < eFB.

Comment. People not familiar or comfortable with these models often try to come up with

ways to artificially generate commitment. For example, they might propose something along

the lines of, “If the problem is that the Principal doesn’t have the incentives to pay a large

bonus when required to, why doesn’t the Principal leave a pot of money with a third-party

enforcer that she will lose if she doesn’t pay the bonus?” This proposal seems somewhat

compelling, except for the fact that it would only solve the problem if the third-party enforcer

could withhold that pot of money from the Principal if and only if the Principal breaks her

promise to the Agent. Of course, this would require that the third-party enforcer condition

its behavior on whether the Principal and the Agent cooperate. If the third-party enforcer

could do this, then the third-party enforcer could presumably also enforce a contract that

conditions on these events as well, which would imply that cooperation is contractible. On
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the other hand, if the third-party enforcer cannot conditionally withhold the money from the

Principal, then the Principal’s reneging temptation will consist of the joint temptation to

(a) not pay the bonus she promised the agent and (b) recover the pot of money from the

third-party enforcer.

Further Reading The analysis in this section specializes Levin’s (2003) analysis to a

setting of perfect public monitoring and no private information about the marginal returns

to effort. Levin (2003) shows that in a fairly general class of repeated environments with

imperfect public monitoring, if an optimal relational contract exists, there is a stationary

relational contract that is optimal. Further, the players’inability to commit to payments

enters the program only through a dynamic enforcement constraint. Using these results,

he is able to show how players’inability to commit to payments shapes optimal incentive

contracts in moral-hazard settings and settings in which the agent has private information

about his marginal returns to effort.

MacLeod and Malcomson (1998) show that the structure of payments in an optimal rela-

tional contract can take the form of contingent bonuses or effi ciency wages. Baker, Gibbons,

and Murphy (1994) show that formal contracts can complement relational contracts, but

they can also crowd out relational contracts. We will explore a number of further issues

related to relational-incentive contracts later in the course.

The motivation I gave above begins with the premise that formal contracts are simply

not enforceable and asks what equilibrium arrangement is best for the parties involved.

Another strand of the relational-contracting literature begins with the less-stark premise

that formal contracts are costly (but not infinitely so) to write, and informal agreements are

less costly (but again, are limited because they must be self-enforcing). Under this view,

relational contracts are valuable, because they give parties the ability to adapt to changing

circumstances without having to specify in advance just how they will adapt (Macaulay,

1963). Baker, Gibbons, and Murphy (2011) and Barron, Gibbons, Gil, and Murphy (2015)

20



explore implications of relational adaptation, and the former paper also considers the question

of when adaptation should be governed by a formal contract and when it should be governed

through informal agreements.
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